The following are the references used to create this wiki:

  1. F. A. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci, 32(12):331-332, 1946.
  2. J. Bourgain. On triples in arithmetic progression. Geom. Funct. Anal., 9:968-984, 1999.
  3. Ernie Croot and Olof Sisask. A new proof of roth's theorem on arithmetic progressions. Proceedings of the American Mathematical Society, 137(3):805-809, March 2009.
  4. P. Erdos. Sur quelques ensembles d'entiers review. MathSciNet.
  5. W. T. Gowers. A new proof of szemeredi's theorem for arithmetic progressions of length four. Geom. Funct. Anal., 8(3):529-551, 1998.
  6. W. T. Gowers. A new proof of szemeredi's theorem. Geom. Funct. Anal., 11(3):465-588, 2001.
  7. Ben Green. Roth's theorem in the primes. ArXiV, (0302311v3), 2004.
  8. N. M. Korobov. Exponential Sums and Their Applications. Springer, 1992.
  9. Scott T Parsell. Exponential Sums and Diophantine Problems. PhD thesis, The University of Michigan, 1999.
  10. H. A. Priestley. Introduction to Complex Analysis. Oxford University Press, 2005.
  11. R.C.Vaughan. The Hardy-Littlewood Method. Cambridge University Press, second edition edition, 1997.
  12. K. F. Roth. On certain sets of integers. J. London Math. Soc., s1-28(1):104-109, January 1953.
  13. Terence Tao and Van H. Vu. Additive Combinatorics. Number 105 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010.
  14. P. Varnavides. On certain sets of positive density. J. Lond. Math. Soc., 1959.
  15. John Woll. Dirichlet's approximation theorem, 2010.